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Abstract
With ChatGPT under the spotlight, utilizing large language

models (LLMs) for academic writing has drawn a signifi-
cant amount of discussions and concerns in the community.
While substantial research efforts have been stimulated for
detecting LLM-Generated Content (LLM-content), most of
the attempts are still in the early stage of exploration. In this
paper, we present a holistic investigation of detecting LLM-
generate academic writing, by providing the dataset, evidence,
and algorithms, in order to inspire more community effort
to address the concern of LLM academic misuse. We first
present GPABenchmark, a benchmarking dataset of 600,000
samples of human-written, GPT-written, GPT-completed, and
GPT-polished abstracts of research papers in CS, physics,
and humanities and social sciences (HSS). We show that ex-
isting open-source and commercial GPT detectors provide
unsatisfactory performance on GPABenchmark, especially for
GPT-polished text. Moreover, through a user study of 150+
participants, we show that it is highly challenging for human
users, including experienced faculty members and researchers,
to identify GPT-generated abstracts. We then present Check-
GPT, a novel LLM-content detector consisting of a general
representation module and an attentive-BiLSTM classifica-
tion module, which is accurate, transferable, and interpretable.
Experimental results show that CheckGPT achieves an av-
erage classification accuracy of 98% to 99% for the task-
specific discipline-specific detectors and the unified detectors.
CheckGPT is also highly transferable that, without tuning, it
achieves ∼90% accuracy in new domains, such as news arti-
cles, while a model tuned with approximately 2,000 samples
in the target domain achieves ∼98% accuracy. Finally, we
demonstrate the explanability insights obtained from Check-
GPT to reveal the key behaviors of how LLM generates texts.

1 Introduction

The recently debuted Large Language Model (LLM) - Chat-
GPT has shown an impressive ability to generate sophisti-
cated texts with human-like language style and quality. While

LLMs/ChatGPT provide an efficient means to retrieve and
summarize information, concerns have been raised that the
LLM-generated content (LLM-content) can be misused to
abuse the trust systems we have. For instance, one of the
biggest inappropriate “use cases” in academia is using Chat-
GPT in cheating or plagiarism [44, 81]. Instead of working
with originality, authors use LLMs to compose their articles
and obtain interests in a dishonest way. ChatGPT may also
be used in other trust systems for fraud and scam purposes,
e.g., internet phishing and romance scams [31, 74].

LLM-content detection can be challenging due to the new
characters of LLM/ChatGPT. First, like a human conversation-
alist, the output of LLM has a relevant, organized response
with a low level of grammar errors. Second, the sampling
mechanism of LLM output ensures that the choice of words is
stochastic, therefore, the responses are distinct even with mul-
tiple repeated inquiries. Third, the misuse of LLM-content can
be stealthy, since users can invoke ChatGPT to polish human
writing. Existing plagiarism/LLM detectors perform poorly
in detecting GPT-polished text (Section 3.2). Although more
academic institutes and publishers have announced policies
on the use of LLM-content, they are hard to enforce unless
we have a tool to effectively detect LLM-content.

Although people have accumulated a variety of experiences
in identifying LLM-content, a holistic view of how LLM-
generated output can be distinguishable from human writing
is still missing. For example, [33, 50] report that ChatGPT
tends to generate output with more objectivity while human-
written texts are more subjective; and the language used in
ChatGPT is more formal, focused, and fluent. However, based
on these qualitative characterizations of subtle language fea-
tures, the detection performance is relatively poor. Our study
shows that human evaluators only achieve ∼50% detection
accuracy with GPT-generated academic writings. It suggests
that the features focusing on the language appearance may not
be reliable in particular writing cases (e.g., scientific papers),
as human-written research papers also demonstrate objectivity
and formality. To bridge this gap, we believe that understand-
ing how ChatGPT writes semantically (e.g., choosing words
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and forming sentences) is necessary. In other words, only
a language-model-based detector can identify a language-
model-based generator.

To this end, in this paper, we aim to explore (1) the typical
scenarios of using/misusing ChatGPT in academic writing, (2)
the difficulty of detecting LLM-content in academic writing,
and (3) the possibility of developing language-model-based
detectors to accurately identify LLM-content. Specifically,
we make the following efforts for each aspect of the study:

We identify three typical cases of using or abusing Chat-
GPT in academic writing, including composing, complet-
ing, and polishing. To further reflect the heterogeneous writ-
ing styles across disciplines, we pick three representative
disciplines for investigation: computer science for techni-
cal/engineering writing, (2) physics for science writing, and
(3) humanities and social sciences for art writing. Accordingly,
we collect and share a dataset of 600,000 human-written and
ChatGPT-generated academic abstracts, called GPABench-
mark. To the best of our knowledge, GPABenchmark is
the most comprehensive and publicly available ChatGPT-
generated dataset of academic writing by far.

To validate the difficulty of detecting LLM-content in
academic writing, we carry out both human- and algorithm-
evaluation. We first conduct an extensive field study with hu-
man evaluators to assess if they can distinguish LLM-content
accurately provided with a mixture of true and false sam-
ples. The cohort of 150+ evaluators consisting of university
faculties, researchers, and graduate students, proves that the
recognition of LLM-content is difficult for visual inspection
based on language appearance, with or without individual
experiences of writing research articles. In addition, we test
multiple state-of-the-art algorithmic detectors on GPABench-
mark, e.g., GPTZero, and show that they demonstrate modest
to poor performance, especially with GPT-polished text.

Last, as the primary goal of this paper, we develop and eval-
uate a language-model-based detection framework, named
CheckGPT, to explore the possibility of building automation
tools for LLM-content detection. Specifically, our proposed
approach has the following advantages: (1) without requir-
ing white-box access to the LLM model, using deep learn-
ing framework with expressive GPABenchmark dataset, the
proposed checkGPT achieves a high accuracy compared to
human and state-of-the-art (SOTA) LLM-content detectors.
(2) We adopt a model-agnostic setting that our model can
be treated as a plugin to most of the pre-trained language
models (e.g., BERT), as a result, the number of parameters to
be trained can be largely reduced. With light training burden,
CheckGPT provides convenience in knowledge update and
software deployment. (3) Due to the ability to learn general-
ized semantic patterns as watermarks of LLM-content, our
proposed model demonstrates a good potential for domain
transfer. With minimum fine-tuning efforts, our model can
quickly pick up the ability to detect LLM-content for new
disciplines and new domains. Finally, we conduct comprehen-

sive experiments to support all the design goals and strengths
of CheckGPT. In summary, our main contributions are:
• We present a publicly available GPT-generated academic

writing dataset - GPABenchmark, a cross-disciplinary
corpus consisting of human-written, GPT-written, GPT-
completed, and GPT-polished research paper abstracts.
GPABenchmark has the potential to be a cornerstone for
benchmarking GPT detectors in academia, and a valuable
resource to assist the design of new detecting methods.

• We evaluate the SOTA open-source and commercial GPT
detectors and show that they provide unsatisfactory perfor-
mance in academic writing. Meanwhile, with a user study
of 150+ participants, we show that even experienced fac-
ulty/researchers are unable to distinguish between human-
written and GPT-generated academic writing.

• We present CheckGPT, a GPT-generated content detector -
a deep learning based and model-agnostic framework with
validated benefits of affordability, transferability, and inter-
pretability. We demonstrate the outstanding performance
(>98% average accuracy) of CheckGPT on GPABenchmark
with extensive experiments. We share CheckGPT at https:
//anonymous.4open.science/r/CheckGPT-80B2.

Ethical Considerations. The user study in Section 4 was
reviewed and approved by the Human Research Protection
Program at the University of Kansas. All the research pa-
per abstracts collected in Section 3 are open to the public.
We invoked ChatGPT’s API (with payment) to collect the
GPT-generated abstracts. The GPABenchmark dataset and
the CheckGPT tool will be shared with the community.

The academic community is actively discussing how AI
writing assistance tools may pose potential challenges to re-
search and education [4,57,76]. OpenAI also posted their per-
spectives on the education-related risks and opportunities [65].
In this paper, we provide a detection tool for LLM-Content.
The impact of ChatGPT and other AI writing assistance tools
on academic integrity is outside of the scope of the paper.

The rest of the paper is organized as follows: we introduce
the background of LLM and survey the related literature in
Section 2. We introduce the GPABenchmark dataset and eval-
uate the open-source and commercial ChatGPT detectors in
Section 3, followed by a user study of LLM-content detection
in Section 4. We present the technical details of CheckGPT in
Section 5 and experimental results in Section 6. Finally, we
discuss the prompt engineering and model interpretation is-
sues and conclude the paper in Sections 7 and 8.

2 Background and Related Work

2.1 Large Language Models (LLMs)
LLMs refer to the language models in natural language pro-
cessing (NLP) trained on massive amounts of data with deep
learning frameworks consisting of the ultra-large amount of
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parameters. Aiming at modeling the sequences of tokens in
human-written texts as unprecedentedly sophisticated prob-
ability distributions, LLMs are capable of generating highly
sophisticated language outputs which can achieve human-like
language style and quality. The most notable examples of
LLMs are the OpenAI GPT (Generative Pre-trained Trans-
former) series models, including ChatGPT, an advanced GPT-
3 model trained on 175 billion parameters. One of the most
prominent characteristics of LLMs is their significant rise
in performance brought by the scaling effect, which can not
be observed in small models. For example, work [99] sum-
marizes the emergent abilities of LLMs in three aspects: (1)
in-context learning, (2) instruction following, and (3) step-by-
step reasoning. In work [93], emergent abilities are validated
in major LLMs (e.g., LaMDA [87], GPT-3 [11], Gopher [72])
through a series of few-shot prompted tasks [11], where the
performance of accuracy jumps sharply from close-to-zero at
under-1022 FLOPs1 models to 40% at 1023 FLOPs model.

ChatGPT is built on top of OpenAI’s GPT-3.5 with fine-
tuning through both supervised and reinforcement learning
techniques. Benefited from the large-scale autoregressive pre-
training based on transformer networks and comprehensive
fine-tuning based on reinforcement learning from human feed-
back (RLHF), ChatGPT is proven to mimic a versatile human
conversationalist and succeed in many writing generation
tasks, such as creating student essays, legal documents, busi-
ness pitches, poetry/song lyrics, and programming codes.

2.2 Detection of LLM-Generated Texts
The concern of LLM/ChatGPT misuse has been raised widely
in academia because (1) academic integrity violations such
as cheating and plagiarism will become easy-to-conduct and
hard-to-detect. With the generative character of GPT, the
texts for the same prompt can be very different at each time,
but all can present human-like patterns and styles. The GPT-
generated outputs with effortless clicks are most likely to pass
existing plagiarism checkers predefined by hand-craft rules
(e.g., exact match scanning). (2) False and redundant informa-
tion may flood the publication systems. Although ChatGPT
is good at mimicking a human writer and showing plenty of
details, the facts in its output can frequently be wrong, espe-
cially in STEM subjects. For example, Stack Overflow had to
ban LLM-generated posts to ensure that visitors are able to
find reliable answers efficiently [80] With the same consid-
eration, academic conferences started to ban LLM-generated
texts (e.g., ICML). Rules are also enforced to clearly state
LLM usages in acknowledgment (e.g., Nature and RSC).

The detection of LLM-generated texts can be categorized
into white-box and black-box approaches [85]. Requiring
full access to the target LLM, white-box approaches implant
watermarks into LLM outputs and detect the watermarks to

1Floating point operations per second (FLOPs) measures the scale of
model parameters.

identify machine-generated texts. However, the owners of
LLMs are increasingly reluctant to open-source their models,
black-box approaches that only gather the output of LLMs
have attracted more interest. They can be further categorized
into (1) feature-based by examining hand-crafted statistical
disparities, linguistic patterns, and fact verification [85]; and
(2) model-based by learning another language model, which
is good at discriminating linguistic characteristics between
human-written and machine-generated texts. Our approach
falls into the second category.

2.3 Related Work

Neural Language Model. The neural networks for word prob-
ability modeling have been developed since 2000s [7, 15, 84].
The recurrent neural network (RNN) family [7] aggregates
the historical contextual information in text and uses the
memory of history to predict the next words. Later, word em-
bedding, which aims to learn a low-dimensional distributed
representation, was proved to be effective by modeling the
context distributions through shallow neural networks, e.g.,
word2vec [60, 61] and GLOVE [68] have been shown to
greatly improve the performance of NLP tasks. Recently, pre-
trained language models have been widely used because of the
general but effective word representation, which significantly
improves the performance on downstream tasks through fine-
tuning. For example, based on the self-attention Transformer
networks [91], BERT [20] is pre-trained on large-scale cor-
pus by predicting randomly masked words, and recognizing
the correct order between two sentences. With the advantage
of paralleling computation and memorizing long sequences,
more Transformer-based models were developed, such as
RoBERTa [51], ELMo [69], GPT-2 [71], and BART [47].
LLM-Content Generation and Detection. Prior works
[29,46,62,86,98] study LLM-content detection for models be-
fore ChatGPT, e.g., Grover, GPT-2, and GPT-3. Recently, [27]
evaluated 50 ChatGPT-written biomedical research abstracts
with human reviewers and a RoBERTa-based classifier. Their
findings show that 34% of the abstracts received scores <50%
from the classifier, i.e., they are labeled as likely human-
written, while four human reviewers correctly identified 68%
of the GPT-written abstracts. [10] trained a transformer-based
deep learning model to distinguish between AI-generated
and human-written essays in a range of different education
levels. [33] and [50] conduct comprehensive studies, includ-
ing human evaluators. [33] analyzes a series of question-
answering datasets in both English and Chinese, and [50] tar-
gets the essays written by students and English learners. [35]
establishes the first machine-generated text benchmark evalu-
ating a number of detection approaches. The detailed compar-
isons of current GPT detectors are listed in Table 1. Compared
with the other approaches, CheckGPT collects and uses a sig-
nificantly larger dataset, uses a model-agnostic design for
higher affordability, upgradability, and flexibility, achieves



very high accuracy, transferability, and interpretability.
Security and Ethics in AIGC Application. AI-generated
content (AIGC) has been used in adversarial activities even
before LLMs were introduced [23], while the recent release of
ChatGPT may have provided the malicious actors with a pow-
erful tool [19, 73]. In particular, the detection of AI-backed
social bots, spam, scams, and misinformation has been ex-
tensively studied in the literature, e.g., [16, 54, 78, 96], while
the rise of LLMs and ChatGPT introduces both new oppor-
tunities [21, 28, 36, 37, 40, 92] and challenges [18, 30, 58].
For instance, ChatGPT may be used in scamming or phish-
ing [31, 34, 74] as well as in the defense [13]. While Open AI
has enforced internal mechanisms to prohibit the unethical use
of ChatGPT, the restrictions could be evaded through prompt
engineering (jailbreaking) [48, 49]. Finally, there are also
discussions and concerns with ChatGPT’s potential impact
on education and research [24, 81, 95], especially on author-
ship and plagiarism [4, 25, 44, 82]. A small-scale experiment
in [27] showed that most of the GPT-generated abstracts were
deemed as completely original by a web-based plagiarism
detector (https://plagiarismdetector.net/).

3 GPABenchmark: GPT Corpus for Academia

3.1 The GPABenchmark Dataset
The state-of-the-art corpora for ChatGPT text classifica-
tion mainly focus on question-and-answer (Q&A) dialogues
[33, 35]. While the Q&A datasets align with the original
design goal of ChatGPT as an interactive “Chat” interface,
they become insufficient as the usage scenarios of ChatGPT
have significantly expanded beyond chat. When ChatGPT
is adopted in academic writing, such as quizzes, essays, re-
ports, and even research papers [24, 81], it generates text that
is objective, formal, fluent, and focused [33, 50], which is
akin to academic writing style, and thus poses challenges to
the detectors. In particular: (1) Human-generated conversa-
tions often contain subjective opinions, personal biases, and
emotional cues. However, such clues are significantly less
observed in academic writing, which is generally formal and
objective [8, 9, 33, 42]. (2) Grammatical errors and inconsis-
tencies in human-generated texts may serve as meaningful
indicators, however, they are less likely to occur in academic
writing, which is expected to meet higher standards for flu-
ency, clarity, and grammatical correctness [38, 56]. Also, aca-
demic writers typically adopt a comprehensive and organized
style [14] akin to the one generated by ChatGPT [33]. (3)
Academic abstracts typically delve into domain-specific and
highly-specialized topics [42], which lead to a significantly
different term distribution from conversational dialogues.

With the unique characteristics of academic writing, a new
ChatGPT-generated corpus is necessary in benchmarking
GPT detectors and in assisting the design of new detectors. In
this paper, we introduce the first large-scale GPT-generated

text corpus for academic writing, namely the GPABenchmark.
We define three tasks based on the most representative scenar-
ios where LLMs are used/misused in academic writing: users
provide a title for text generation, provide a partial draft for
completion, or provide a draft for polishing.

• Task 1. GPT-written full abstracts (GPT-WRI or WRI).
The author gives a title to ChatGPT and asks it to write an
abstract from scratch. A sample prompt is: Please gener-
ate an abstract for a research paper titled “Attitude of the
Society Towards People with Visual Impairment.”

• Task 2. GPT-completed abstracts (GPT-CPL or CPL).
One function that was often advertised for ChatGPT is text
completion. When the author provides a few sentences to
ChatGPT, it follows the logic in the seed text to complete
the rest of the paragraph. We mimic this scenario as fol-
lows: for each abstract with s sentences, we provide its first
half (s/2 sentences) to ChatGPT and ask it to complete the
abstract with w words, where w is the number of words
in the second half of the original abstract. In this way, the
generated abstract will have approximately the same length
(number of words) as the human-written abstract.

• Task 3. GPT-polished abstracts (GPT-POL or POL).
We provide the entire abstract to ChatGPT for polishing.
We adopt a popular prompt from the ChatGPT users’ com-
munity: “This is an abstract of a research paper. Please
rewrite for clarity.” ChatGPT re-writes the text sentence-
by-sentence and generates a polished abstract that is usually
shorter than the original. Invoking ChatGPT multiple times
will generate different results for the same seed abstract.

In the rest of the paper, we will use the term human-written
abstracts (HUM) to denote abstracts that are completely writ-
ten by human authors. We use GPT-Generated abstract (GPT-
GEN) to denote a superset of all three categories of GPT-
content as described above: GPT-WRI, -CPL, and -POL.

We collect the published research papers from three disci-
plines: (1) computer science (CS), (2) physics (PHX), and (3)
humanities and social sciences (HSS), which include four typ-
ical “soft science” fields: history, philosophy, sociology, and
psychology. The ground truth data are collected from arXiv
for CS and physics, and from Springer’s SSRN for HHS. We
chose these three fields that spread across the “hard science”
(math-intensive) and “soft science” disciplines. We avoided
mathematics as we observed that their publications often have
very short abstracts that may not provide sufficient informa-
tion to ChatGPT or to the detector. For CS and physics, we
only used papers that were posted on or before 2021, to ensure
that they were all human-written, as researchers may have
adopted GPT-3 to assist their writings before the web-based
ChatGPT was released2. For each paper, we store an identifier
(ID), a title (T), and an abstract (ABS). In about three weeks,
we collected 50,000 data samples for each discipline.

2GPT-3 was first released in 06/2020, access to the test release was by-
invitation-only until 11/2021, when the API was made publicly accessible.

https://plagiarismdetector.net/


Table 1: Summary of SOTA LLM-content Detectors. Tool: used/evaluated online detection tools. Open: open-sourced.
Study Approach Transfer

-ability
# Human Domain Dataset

Tool ML/Stat Human Train DL Evaluators News QA Essay Research Size Open

Grover or
GPT-2&3

[29] ● − − ● ● 300
[46] ● ● − − ● 90k ●
[62] ● − − ● ● −
[86] ● ● − ● 28k ●
[98] ● ● ∗ ● 20k ●

ChatGPT

[10] ● − ● 100k
[27] ● ● − 2 ● 100
[33] ● ● ● 17 ● 125k ●
[50] ● ● ● ● 43 ● 8k ●
Ours ● ● ● ● ● 155 ● ● ● >600k ●

∗ The number of human evaluators is not explicitly provided.

Figure 1: Distribution of abstract lengths (# of words): red:
ChatGPT-generated; green: human-written.

We then invoke ChatGPT to generate abstracts in three
tasks defined above. ChatGPT is based on OpenAI’s GPT-3.5
family of LLMs, among which gpt-3.5-turbo is considered
the most capable and the most updated model. We invoked
gpt-3.5-turbo through OpenAI’s API. For each paper in the
dataset, we used the prompts described in each task to produce
GPT-written, completed, and polished abstracts at the cost
of 0.2 cents per 1,000 tokens. Although OpenAI has set a
high query rate limit for paid users, it still takes up to several
seconds to generate each abstract due to network delay and
ChatGPT server overload. In about eight weeks, we generated
150,000 samples in each of the three categories: GPT-written,
GPT-completed, and GPT-polished abstracts.

The average lengths of GPT-generated abstracts are 187.3,
109.6, and 152.6 words for Tasks 1, 2, and 3, respectively. The
average lengths of human-written abstracts are 183.6, 103.6,
and 189.6 words. Note that we only consider the second half
of the abstracts in Task 2. The distributions of abstract lengths
are shown in Figure 6, where we have some interesting ob-
servations: (1) human-written abstracts in physics are shorter
than the other disciplines, while GPT-written abstracts in
physics are longer than the other disciplines; (2) GPT-written
abstracts are longer than human-written abstracts in physics
but shorter in CS and HSS; (3) in all three disciplines, GPT-
polished abstracts are shorter than human-written abstracts.

3.2 Benchmarking Open-Source and Commer-
cial ChatGPT Detectors

With the GPABenchmark dataset, we evaluate the detection
accuracy of three open-source and commercial ChatGPT de-
tectors that are available over the Internet: GPTZero [88],
ZeroGPT [1], and OpenAI’s classifier [64]. We are unable to
run large-scale experiments due to (1) they do not provide any
API, hence, we need to use web scraping in the evaluation and
we enforce politeness in web scraping; (2) some of them are
slow or enforce rate limits that are low; and (3) some of them
charge a fee for the inquiries. For each task (GPT-WRI, -CPL,
and -POL), we randomly sample 300 pairs of human-written
abstracts and the corresponding GPT-generated abstracts in
each discipline (2,400 pairs in total). We feed these abstracts
to each detector and summarize their performance as follows.
Note that, in Task 2 (GPT-completed abstracts), we only sub-
mitted the second half of each abstract to the detectors.
GPTZero [88]. For each text paragraph, GPTZero reports
a binary decision of “human-written” or “GPT-generated”.
As shown in Table 2 (a), GPTZero demonstrates very high
accuracy with human-written abstracts with an average ac-
curacy of 98.1% across all the topics. However, its detection
accuracy for GPT-generated abstracts appears to be very low,
with an average accuracy of 24.3%. That is, GPTZero has a
very strong tendency to classify an input abstract as “human-
written”. From Task 1 to Task 3, the detection performance
decreases significantly (from 42.5% to 8.1%). That is, when
more information is given to ChatGPT, the generated text
appears to be more “human-like” in the eyes of GPTZero.
ZeroGPT [1]. For each input text snippet, ZeroGPT reports a
decision from nine different labels (Appendix A.1). We map
them to integer scores in the range of [0, 8], where 0 indicates
human-written and 8 indicates AI/GPT-generated. We also
use a threshold of 4.0 on each score to generate a binary
decision of “human-written” and “GPT-generated” for each
test (please refer to Appendix A.1 for more discussions on this
decision threshold). We present ZeroGPT’s average detection
accuracy for each task and each discipline in Table 2 (b1),
and the average score for each experiment in Table 2 (b2).
ZeroGPT’s detection accuracy for human-written abstracts is



Table 2: Performance of open-source and commercial GPT
detectors. Values in red: detection accuracy <50%, or average
score on the wrong side of the decision threshold.

T1. GPT-WRI T2. GPT-CPL T3. GPT-POL
CS PHX HSS CS PHX HSS CS PHX HSS

(a) Classification accuracy (in %) of GPTZero.
GPT 30.3 25.3 72.0 17.0 6.0 43.7 1.7 2.3 20.3

Human 99.3 99.7 100 99.7 99.7 94.3 99.7 95.7 95.7
(b1) Detection accuracy (in %) of ZeroGPT

GPT 67.4 68.4 92.3 25.3 10 62.4 3.3 2.7 24.7
Human 100 98.4 95 99.7 99.7 94.7 98.3 98.6 92.7
(b2) Average score reported by ZeroGPT. 0:human, 8:GPT

GPT 5.43 5.39 7.41 2.26 0.97 4.97 0.35 0.29 2.15
Human 0.09 0.13 0.52 0.08 0.04 0.47 0.20 0.14 0.64

(c.1) Detection accuracy (in %) of OpenAI’s detector
GPT 80.7 70 63 63.7 23.7 27.3 6.3 4.3 6

Human 51.0 69.7 84.0 35.3 59.7 79.6 50.7 69.0 88.0
(c.2) Average score reported by OpenAI. 0:human, 4:GPT
GPT 3.11 2.89 2.72 2.70 2.12 2.04 1.75 1.59 1.52

Human 1.42 1.17 0.59 1.71 1.35 0.68 1.38 1.14 0.52

close to 100% in CS and physics, and slightly lower (∼95%)
in humanities and social sciences (HSS). Its accuracy with
fully GPT-written abstracts is also high, especially for HSS
(92.3%). However, the detection accuracy for GPT-completed
and GPT-polished abstracts in CS and physics appears to be
very low (in the range of [5%, 25.3%]), while the accuracy for
HSS appears to be relatively higher. While ZeroGPT claims a
detection accuracy of 98%, it appears to be less effective in
academic writing. Similar to GPTZero, ZeroGPT also has a
tendency to classify GPT-generated text as human-written.

OpenAI’s Classifier [64]. For each input text snippet, Ope-
nAI’s own classifier generates a decision out of five classes
that are mapped to integer scores in [0, 4], where 0 indicates
“very unlikely AI-generated”, 2 means “unclear if it is AI-
generated”, and 4 indicates “likely AI-generated” (Appendix
A.2). We use a threshold of 2 to generate a binary decision
for each test. Note that a classification of “unclear if it is AI-
generated” (2) is considered wrong for both GPT-generated
and human-written inputs. We present OpenAI’s classifica-
tion accuracy in Table 2 (c1) and the average scores in Table
2 (c2). OpenAI’s classifier shows slightly different patterns
from GPTZero and ZeroGPT. It demonstrates moderate per-
formance in classifying abstracts that are fully written by
humans or GPT. However, its accuracy for GPT-completed
and GPT-polished abstracts appears inadequate (but slightly
better than GPTZero and ZeroGPT). We also noticed that
this classifier is very sensitive to the length of text. While it
requires a minimum of 1,000 characters for each input text
snippet, a shorter input (e.g., input in Task 2 GPT-CPL) is
more likely to yield a wrong or “unclear” decision.

4 User Study: Identification of Human-
Written and GPT-Generated Abstracts

With all the news reports and online/informal discussions that
human users are unable to distinguish ChatGPT-generated text
from man-written text, we investigate this problem through
a user study in a relatively well-defined domain – the re-
search publication. We aim to answer three research ques-
tions: (1) Could (experienced) researchers distinguish be-
tween human-written and GPT-written/polished research pa-
pers/abstracts? (2) Does prior experiences with reading and
writing research papers contribute to the capability of identi-
fying GPT-generated papers? (3) Does the researchers’ capa-
bility in identifying GPT-generated text vary by discipline?

We designed a questionnaire as follows3: On the landing
page, an IRB information statement is displayed to the par-
ticipants, who will then select their “most familiar discipline”
among CS, Physics, and Humanities & Social Sciences (HSS).
The main questionnaire page first asks the participants to pro-
vide basic background information: role (faculty, researcher,
or student), whether they have published research papers (yes
or no), and their self-claimed familiarity with research papers
(expert, knowledgeable, somewhat familiar, or no familiarity).
Our suggested rubric for “expert” is “have published 10+ pa-
pers OR read 100+ papers”. Three abstracts are then displayed
to the user, who is asked to annotate each as “human-written”
or “GPT-generated/polished”. Each question is randomly sam-
pled from human-written or GPT-generated abstracts from
Task 1 and Task 3. For abstracts in Task 3, we display the fol-
lowing hint: “This abstract was completely written by humans
OR written by humans and then polished by ChatGPT.”

We distributed questionnaires to faculty members, re-
searchers, and graduate students in the Department of EECS,
Department of Physics, and College of Liberal Arts at our
University. Physics faculty members also shared the question-
naire with collaborators in a research organization in Europe.
In approximately four weeks, we received 155 responses with
465 annotated abstracts. The overall accuracy, defined as the
proportion of correctly identified abstracts out of all abstracts,
was 48.82%, which is slightly worse than random guesses.
The detailed statistics of the responses are shown in Table 3.
From the responses, we have the following observations:

• It is extremely challenging for human users to distinguish
between human-written and GPT-generated paper abstracts.
Only 21 users correctly identified all three abstracts. If all
participants were making random selections, 19.38 users
would have scored 3 correct selections. That is, the top
performers are only slightly better than random guesses.

• Participants have the tendency to annotate all abstracts as
“human-written”. 57.33% of human-written abstracts were
correctly labeled as “human-written", while 59.66% of GPT-

3This user study was reviewed and approved by the Human Research
Protection Program at the University of Kansas (STUDY00150100).



Table 3: Detailed results of the user study to identify GPT-
generated paper abstracts: Pat.: number of participants; Abs.:
number of annotated abstracts; Cor.: number of correct an-
notations; Acc.: accuracy; GPT: accuracy for GPT-generated
abstracts; Man: accuracy for human-written abstracts.

Category Par. Abs. Cor. Acc. Man GPT
Role

Faculty 44 132 65 49.2% 58.6% 41.9%
Researchers 30 90 45 50.0% 58.2% 37.1%

Students 81 243 117 48.1% 56.3% 40.3%
Discipline

CS 57 171 86 50.3% 59.0% 43.0%
Physics 48 144 77 53.5% 65.1% 37.7%

HSS 50 150 64 42.7% 46.5% 39.2%
Self-claimed Familiarity with Research Papers
Expert 52 156 80 51.3% 60.6% 43.5%

Knowledgable 56 168 80 47.6% 57.3% 34.7%
Somewhat 39 117 57 48.7% 56.0% 43.3%

No familiarity 8 24 10 41.7% 46.7% 33.3%
Published papers?

Yes 106 318 155 48.7% 58.1% 39.2%
No 49 147 72 49.0% 55.6% 42.7%

generated abstracts were mistakenly labeled as “human-
written”. The result confirms the public opinion that Chat-
GPT achieves human-like language style and quality.

• Users are better at identifying fully GPT-written abstracts
with an accuracy of 43.81%, while they perform worse with
GPT-polished abstracts with an accuracy of 37.5%. In both
cases, the accuracy is still lower than random guesses.

• Users’ self-claimed expertise appears to slightly affect their
capability to identify human-written and GPT-generated
abstracts. For example, participants with “No familiarity”
with papers performed worse than the others. However,
most of the differences are not statistically significant.

• Users are better at identifying GPT-generated abstracts in
physics. They are significantly worse at identifying GPT-
generated abstracts in humanity and social sciences.

5 CheckGPT: An Accurate Detector for
ChatGPT-generated Academic Writing

5.1 The System Model and Assumptions

Our objective is to build a classifier, CheckGPT, to determine
whether a given text is generated by ChatGPT. We denote
our classifier as H , and the classification problem can be
formulated as:

ŷ = H (s) (1)

argminθ L(y, ŷ) (2)

where s represents an unstructured text snippet (i.e., paper
abstract). Given s, H (s) outputs the probability distribution ŷ
considering label space {‘h’, ‘g’}, where ‘h’ indicates human-
written text and ‘g’ indicates ChatGPT-generated text. The
goal is to find an optimal set of parameter θ for classifier H ,
so that the loss function L measuring the distance between
prediction ŷ and observation y is minimized.

In his paper, we consider a black-box defender, who only
has access to the observed samples. However, she has no
insider knowledge of the LLM which generates these samples,
including weights, structures, and gradients. This is a realistic
assumption, considering OpenAI has not open-sourced LLM
since the GPT-3.5 family. It is worth noting that all the models
and datasets used in CheckGPT are publicly available.

Based on the nature of the task and the defender’s goals,
we further make these assumptions: (1) Moderate Data Avail-
ability. We do not assume the defender’s privileged access to
or abusive use of ChatGPT. The training and testing samples
are collected strictly following OpenAI’s policy. With the
rate limit and pricing, an ordinary user cannot have massive
amounts (tens of millions to billions) of samples. Hence, the
defender focuses on a more concise and domain-specific task.
(2) Affordability. We do not assume the defender’s access to
excessive computing power, which is only affordable to large
organizations. We aim to develop a lightweight solution that
smaller entities could conveniently obtain and deploy in a
daily operational environment. And (3) Privacy-preserving
Local Deployment. The end users may not share their data
with a detection service provider due to concerns such as pri-
vacy, intellectual property, or policy, e.g., student essays or
papers under review. Therefore, the detector should be easily
transferred to a new domain using a small amount of data
from the target domain and affordable computation resources.

5.2 The Baseline Approaches

We employ the non-deep learning methods as our baseline
approach. The raw texts are first transformed into vector rep-
resentations using the Term Frequency-Inverse Document
Frequency (TF-IDF) model. Due to the vast vocabulary of
the dataset, PCA is applied to reduce the feature space to
100 dimensions. We adopt three machine learning models
to distinguish between human-written and GPT-generated
abstracts: Gaussian Naive Bayes (GNB), support vector ma-
chine (SVM), and random forest (RF). For each task and disci-
pline, the models are trained with 35,000 human-written and
GPT-generated samples, respectively, and tested with 15,000
samples from each class, i.e., a 70/30 train-test split ratio.

The classification performance of the baseline models is
shown in Table 4. We have the following observations: (1)
While NB has been widely used in text analysis [63, 75], it
performs poorly across all the tasks. This indicates that the
assumptions (e.g., Gaussian Distribution and Independence)
may not hold in this problem. (2) For Task 1, SVM and RF



Table 4: The baseline approach: classification accuracy (in %)
for each classifier on each task and each discipline dataset.

Classifier T1. GPT-WRI T2. GPT-CPL T3. GPT-POL
CS PHX HSS CS PHX HSS CS PHX HSS

GNB 53.3 51.9 52.2 52.1 51.7 50.8 50.2 50.5 51.4
SVM 96.4 98.2 74.8 86.4 90.5 66.5 57.8 75.9 53.3
RF 96.5 98.2 84.8 87.4 90.5 72.9 52.0 72.7 58.7

perform well in distinguishing GPT-written abstracts in CS
and physics. However, their performance decreases to approx-
imately 80% for HSS. A possible explanation is that the ab-
stracts fully written by ChatGPT demonstrate unique lexical
features that are easily distinguishable with linear classifiers.
(3) For Task 2, the accuracy of SVM and RF drops to 86%
for Computer Science, 90% for Physics, and around 70 % for
humanity and social sciences. (4) The GPT-polished abstracts
in Task 3 are more challenging to detect. The performance of
the SVM and RF decreases sharply to 52% and 58% for CS
and HSS, respectively, and to 70% for physics.

In summary, while the baseline approach lacks capabili-
ties in some tasks, it still significantly outperforms human
evaluators in Section 4. As the TF-IDF model only captures
the lexical features, the success of SVM and RF in Task 1
implies that ChatGPT writes with different term distributions
than humans, especially in physics, where human authors may
use more math/technical terms than ChatGPT. However, the
detection accuracy decreases significantly in Task 3, implying
that GPT-polished abstracts tend to adopt the vocabulary and
term distribution from the seed human-written abstracts.

5.3 The CheckGPT Framework

Preliminaries. The Bidirectional Encoder Representations
from Transformers (BERT) [20] family of models, including
but not limited to BERT itself and RoBERTa, have shown
extraordinary capabilities in a wide range of NLP tasks.
RoBERTa (Robustly Optimized BERT approach) [51], is the
state-of-the-art member of this family built upon BERT by
Meta. Models like RoBERTa are pre-trained on a massive
corpus from diverse disciplines. Such extensive training al-
lows them to capture and represent various linguistic patterns,
syntactic structures, and semantic relationships in the texts.
Its tokenization and encoding enable the transformation of
raw data into effective representations, which can be used
for downstream tasks. In this work, we utilize the pre-trained
RoBERTa to preprocess the text data. The pre-training of
the RoBERTa utilizes a masked language modeling (MLM)
objective, which can be formalized as:

LMLM =−Es∼Ds logP(m|s) (3)

where Ds is the corpus, s denotes an input sequence, and m is
a masked token. The representations extracted by RoBERTa

Figure 2: The architecture of the CheckGPT model.

serve as the inputs of our downstream classifier, a Long-Short-
Term Memory (LSTM) network [39]. LSTM is a variant of
Recurrent Neural Networks (RNNs) that has gained incredible
success in natural language processing by handling sequential
information. LSTM mitigates the gradient vanishing prob-
lem and improves model performance over long sequences
by incorporating the gating mechanism, which enables it to
effectively and selectively retain or update information.
Input Representation. Our CheckGPT includes two stages:
representation, and classification. As shown in Figure 2,
CheckGPT uses a model-agnostic design for text represen-
tation, so that any tokenization and embedding model could
be employed in this framework. This design achieves higher
affordability, upgradability, and flexibility since (1) adopting
standardized and powerful embedding models save lots of
effort and computations compared with training a large em-
bedding model, which is usually beyond the capability of reg-
ular users or organizations; (2) a plugin design allows future
upgrades by seamlessly accommodating new representation
models; and (3) the lightweight classification head is easier to
be tuned when new data or domains are added. In our proof-of-
concept prototype of CheckGPT, the first stage is completed
using the tokenizer and encoders of RoBERTa-large4. For
tokenization, the pre-trained RoBERTa-large enforces a limit
of 512 tokens. The tokenization can be formalized as:

X = BPE(s) = {xi}n
i=1 (4)

where X denotes a sequence of length n consisting of in-
dividual tokens xi, and BPE refers to the byte-level pairing
encoding utilized by RoBERTa.

For the embedding layer, the RoBERTa uses embeddings
of size 1024 to represent each token. In this way, our texts are
transformed into contextualized representations with a shape
of n×1024. The encoding can be formalized as:

E = TransformerEncoder(X) = {ei}n
i=1, ei ∈ R1024 (5)

where E denotes a sequence consisting of individual embed-
ding ei.

4https://github.com/facebookresearch/fairseq/tree/main/examples/roberta



LSTM Classification. The embeddings are finally fed into the
LSTM classifier fθ. Our classifier consists of two subsequent
bi-directional LSTM layers. Each of these layers has a hidden
state with a size of 256 and is followed by an attention layer
[6]. The outputs of the two layers are concatenated, and then
followed by a dropout layer with a dropout rate of p= 0.5, and
finally fed into a dense layer. The dense layer gives two output
values. Each softmaxed value represents the probability of
belonging to each of the two classes: “GPT-generated” (yg)
or “Human-generated” (yh). In details, LSTM classifier fθ(E)
is shown as follows:

h1 = LSTM1(E), r1 = ATTN1(h1)

h2 = LSTM2(h1), r2 = ATTN2(h2)

(ŷg, ŷh) = Softmax(FC(Dropout(r1 ⊕ r2)))

(6)

Model Training. The classifier fθ with parameter θ is opti-
mized independently with the RoBERTa frozen during the
training. We adopt an AdamW optimizer [52], a CosineAn-
nealing learning rate scheduler [53], and a gradient scaler
for efficient mixed-precision training [59]. We employ cross-
entropy loss for binary classification. Given the model’s pre-
dicted probabilities ŷ = (ŷh, ŷc) and one-hot encoded ground
truth y = (yh,yc) , the loss of a data sample is calculated as:

L(θ) =− [yc log(ŷc)+ yh log(ŷh)] (7)

Design Choices and Discussions. One of the alternative ap-
proaches is directly applying RoBERTa by adding a Rober-
taClassificationHead [41]. However, our experiments with a
two-layer linear head (1M parameters) incur a 6-7% lower
accuracy compared to CheckGPT. This can be attributed to
LSTM’s capability to track the sequential dependencies over
long periods in the text sequences [97].

Another alternative approach is to fine-tune the entire pre-
trained model [66, 67], i.e., the model adopts the pre-trained
parameters as a warm start and gets retrained on the new
dataset. The CheckGPT design has several advantages com-
pared with tuning the entire model: (1) CheckGPT will signif-
icantly reduce the parameters for training to save both time
and computing resources. Considering the parameters of large
language models ranging from 66M (DistilledBERT [77])
to 355M (RoBERTa-large [51]) and 1750M (GPT-3 [11]),
our model only has 4M parameters (during training). The
drop in model size also reduces the risks of over-fitting, espe-
cially when the dataset used for fine-tuning is small [5, 89].
(2) Without requiring fine-tuning, our framework is model-
agnostic which can be compatible with various representation
approaches (e.g., BERT, BART). As a result, CheckGPT is a
lightweight detector and can be used with almost any publicly
available pre-trained language models. As a tool for academia,
this quality makes CheckGPT friendly to deploy and easy to
customize. (3) By freezing the LLM with well-crafted pa-
rameters gained from extensive training, we retain the meta-
knowledge to the greatest extent, which is expected to improve

Table 5: CheckGPT’s classification accuracy (in %) for each
task and each discipline: TP rate, TN rate, overall accuracy.

T1. GPT-WRI T2. GPT-CPL T3. GPT-POL
CS PHX HSS CS PHX HSS CS PHX HSS

TPR 99.96 100.0 99.94 99.21 97.71 98.58 98.43 98.93 98.45
TNR 99.98 99.99 99.92 99.43 98.14 99.00 98.37 99.22 98.49
Acc 99.97 99.99 99.93 99.32 97.93 98.79 98.39 99.08 98.47

CheckGPT’s transferability when dealing with samples from
new domains (will be demonstrate in Section 6.3).

6 Experiments

6.1 Settings and Metrics
We implement CheckGPT with PyTorch 1.13.1 in Python
3.9.1 on Ubuntu 22.04. The pre-trained RoBERTa is adopted
from [41]. All the experiments were conducted on an Nvidia
2080Ti GPU and an Intel i9-9900k CPU. We use GPABench-
mark for most of the experiments. CheckGPT is trained with
an initial learning rate of 2e-4, a batch size of 256, and an
early-stop strategy to finish training when the validation loss
does not improve for a predefined number of epochs.

When we consider CheckGPT as GPT-generated content
detector, the true positive rate (T PR = T P

T P+FN ) is the propor-
tion of correctly detected GPT-generated abstracts out of all
GPT-generated abstracts, i.e., the accuracy in classifying GPT-
generated text. The true negative rate (T NR = T N

T N+FP ), is the
proportion of correctly identified human-written abstracts out
of all human-written abstracts, i.e. the accuracy in classifying
human-written text. The overall classification accuracy of
CheckGPT is defined as the proportion of correctly classified
samples over all the testing samples: Acc = T P+T N

T P+FP+T N+FN .

6.2 Task- and Discipline-specific Classifiers
The task-specific and discipline-specific CheckGPT classi-
fiers are trained at an average speed of 120s for each epoch
of 80,000 training samples, while the average testing speed is
0.03s per sample. We report the classification accuracy in Ta-
ble 5. Each task/discipline is trained with 80% of the samples
(40,000 GPT-generated and 40,000 human-written samples)
and tested with the remaining 20%. CheckGPT achieves very
high performance in all cases. In particular, abstracts fully
written by ChatGPT are the easiest to detect, with overall clas-
sification accuracy higher than 99.9% in all three disciplines.
In Task 2, we only use the second half of the abstracts, i.e.,
the sentences written by GPT, in the classifier. The slightly
lower classification accuracy could be explained by (1) with
more seed information, ChatGPT generates higher quality
writing with more domain-specific knowledge, and (2) the
samples are shorter (half abstracts) than the ones in Task 1



Figure 3: Training loss of the task-specific and discipline-
specific classifiers.

(full abstracts) so that they provide less information to the
classifier. Finally, the average classification accuracy of Task
3, which appeared to be the most difficult task for the open-
source and commercial detectors (Section 3.2) and the base-
line approaches (Section 5.2), is also in the range of [98%,
99%]. In conclusion, the task-specific discipline-specific clas-
sifiers demonstrate outstanding performance in distinguishing
human-written and GPT-generated paper abstracts, even for
tasks that pose great difficulties for the other SOTA detectors.

In Figure 3, we show the training loss of the task-specific
discipline-specific classifiers. Models in Task 1 quickly
learned some simple features, e.g., lexical features, and
achieved satisfactory performance, while Tasks 2 and 3 are
clearly more difficult. In most cases, HSS is more challenging
than CS, while physics is the easiest. That is, ChatGPT does
a better job mimicking human-written style in soft sciences.
A different pattern is observed in Task 2, as the short samples
in physics introduce additional challenges to the classifier.

Finally, we visualize the distribution of the human-written
and GPT-generated abstracts in the feature space. We ran-
domly select 2,000 CS abstracts from each task and each label,
extract their vector representations right from the last linear
layer of the classification head, and employ the t-Distributed
Stochastic Neighbor Embedding (t-SNE) [90] to visualize
the data points in a 3-dimensional space, as shown in Fig-
ure 4.As we can see, the GPT-written abstracts in Figure 4
(a) are highly clustered, which implies that the vocabulary,
the writing style, and the semantic features of these abstracts
are very consistent, so that they are easily distinguishable
from the human-written abstracts, which appear to be more
diverse in the feature space. The GPT-completed samples in
Figure 4 (b) are shown to be significantly more diverse than
the GPT-written samples. While they are also closer to the
human-written samples in the feature space, there is still a
clear separation between the two classes of samples. Finally,
the GPT-polished samples in Figure 4 (c) appear to be scat-
tered, where some data points appear to be blended with the
human-written samples in a 3-dimensional space, which also
demonstrates the difficulty in separating these two classes.

6.3 Transferability across Tasks/Disciplines
We evaluate CheckGPT’s capability in handling cross-task
and cross-disciplinary testing samples. First, we use the nine

Figure 4: Feature space distribution of human-written (green)
and GPT-generated (red) abstracts.

basic models trained in Section 6.2 to evaluate testing samples
from other tasks and disciplines, without model fine-tuning.
In Figure 5 (a), each value demonstrates the classification
accuracy (in %) using the model from the task/discipline
denoted on the x-axis against testing samples (10,000 GPT-
generated and 10,000 human-written) from the task/discipline
indicated on the y-axis. For example, when we use the model
trained with Task 3 (GPT-polished) physics data (denoted as
3P in the figure) to evaluate the CS testing samples from Task
2 (2C), the classification accuracy is 88% (row 6 column 8 of
Fig. 5 (a)). From the figure, we observe the following:

• CheckGPT is adaptable across disciplines. It demonstrates
solid performance (mostly >90%) when we test a model
with samples from different disciplines in the same task.

• CheckGPT appears to be less adaptable across tasks. In par-
ticular, the models trained in Task 1 demonstrate low per-
formance with testing samples from the other tasks, while
the models from Task 2 are also incapable of handling Task
3 (GPT-POL) data. Note that the models always give high
TN rates (close to 100%), hence, a classification accuracy
of ∼70% implies a TP rate of only ∼40%.

• The models trained in Task 3 demonstrates solid perfor-
mance with testing samples from Tasks 1 and 2. It implies
that Task 3 could be the most difficult task, and the models
have learned subtle but inherent features of AIGC.

We then fine-tune the final linear layer of each model with a
small amount of data from the target domain, i.e., 1%, 5%, and
10% of the target dataset. We report the classification accuracy
of the tuned models in Figure 5 (b) to (d). As shown, tuning
the model with as few as 1% of data (500 human-written and
500 GPT-generated samples) increases the classification accu-
racy to >90% in 62 out of 81 experiments. If we increase the
fine-tuning data to 5,000 samples in each label, the majority
of the tuned models (55/81) achieve a classification accu-
racy of >95%. Moreover, we still observe similar patterns of
transferability as we have observed from Figure 5 (a).
The Unified Classifiers. We train a cross-discipline classifier
for each task with the training samples from all three disci-
plines in the same task. We test each classifier with the testing
samples in each discipline and report the true positive and
true negative rates in Table 6 (a). Finally, we train a unified



Figure 5: CheckGPT’s transferability across disciplines and tasks: (a) without fine-tuning, (b)-(d): tuned with 1%, 5%, and 10%
data from the target domain, respectively. 1C: Task 1 GPT-WRI CS data; 2P: Task 2 GPT-CPL+physics; 3H: GPT-POL+HSS.

Table 6: Classification accuracy (in %) of the unified classi-
fiers.

T1. GPT-WRI T2. GPT-CPL T3. GPT-POL
CS PHX HSS CS PHX HSS CS PHX HSS

(a) Task-specific Cross-disciplinary Classifiers
TPR 99.98 100 99.94 99.35 97.47 98.40 98.93 99.40 98.75
TNR 99.98 99.99 99.93 99.22 98.29 99.23 98.44 99.43 98.83
TPR 99.97 98.41 99.03
TNR 99.97 98.91 98.90

(b) Cross-task, Cross-disciplinary Classifier
TPR 100 100 99.97 99.36 97.46 98.88 98.20 99.08 98.56
TNR 99.23 99.73 99.67 98.80 98.63 98.80 99.23 99.84 99.68
TPR 98.95
TNR 99.30

cross-task cross-discipline classifier for all the tasks and dis-
ciplines. The true positive and true negative rates are reported
in Table 6 (b). In summary, both unified classifiers (a) and (b)
perform well in the testing of each task-discipline experiment.
Specifically, the unified training helps in boosting the per-
formance of individual tasks, such as the difficult GPT-POL
in HSS. These experiments further suggest the feasibility of
developing general detecting algorithms in academia.

6.4 Transferability to New Domains
To evaluate CheckGPT with GPT-generated text from other
domains, we have collected the following datasets:
• Wikipedia Abstracts [Wiki]. We randomly select 1,500

samples from the Wikipedia articles corpus [12]. The
dataset contains the first introductory section of Wiki arti-
cles. We revise the ChatGPT prompts to avoid terms such
as “research” and “paper”. For example, we use the prompt
“Please generate a brief introduction of ...” in Task 1.

• Essays. We use two types of essays from the Hewlett Foun-
dation Automated Essay Scoring dataset [26]: [Essay-C]
Essay set 1 contains 1,785 essays of 350 words on average.
We adopt the original prompt from the dataset in Task 1:

Table 7: CheckGPT’s classification accuracy (in %) for other
datasets.

dataset w/o fine-tuning w/ fine-tuning
Task 1 Task 2 Task 3 Task 1 Task 2 Task 3

Wiki 99.63 97.66 93.82 99.93 100.00 99.60
Essay-C 77.18 99.87 93.76 98.25 100.00 99.74
Essay-P 83.14 95.90 95.77 96.51 99.48 99.39

BBC 79.66 98.41 90.89 97.44 99.31 98.62

“Write a letter to your local newspaper in which you state
your opinion on the effects computers have on people. Per-
suade the readers to agree with you.”, and design prompts
for Tasks 2 and 3 accordingly. [Essay-P] Essay set 7 con-
tains 1,730 stories about patience. We refer to the original
prompts from the dataset to design ChatGPT prompts e.g.,
“write a story in your own way about patience” is used in
Task 1. We remove essays that are shorter than 70 words.

• BBC News Article Dataset [BBC]. The dataset contains
1,454 BBC news articles from 2004 to 2005 in five topical
areas: business, entertainment, politics, sport, and technol-
ogy [32]. We use prompts to emphasize “news articles” to
ChatGPT, e.g., “Please generate a news article titled ...”.
We employ the task-specific cross-discipline classifiers in-

troduced in Section 6.3 on the four datasets and report the
classification accuracy in Table 7. As shown in the table,
CheckGPT demonstrates solid performance in detecting GPT-
generated text content in domains other than academic writ-
ings, especially in Tasks 2 and 3. Moreover, we use 50% of
the data from each new domain to fine-tune the last linear
layer of the model and evaluate with the remaining 50% of the
samples. As shown in Table 7, the fine-tuned models achieve
very high classification accuracy in the new domains.

6.5 Transferability to New Models
OpenAI released GPT-4 on March 14, 2023, while Google
released its LLM-based chatbot, Bard, a week later. They only
provide web-based access and they enforce highly restricted
rate limits, hence, we test them in small-scale experiments.



Table 8: CheckGPT’s true positive rate for Bard and GPT-4.

Bard GPT-4
Task 1 Task 2 Task 3 Unified Task 1 Task 2 Task 3 Unified
50/50 53/53 44/51 138/154 53/53 53/53 53/53 157/159

We invoke Bard and GPT-4 with the same methods in
Section 3.1 to generate AI-written, AI-completed, and AI-
polished text for 53 randomly selected CS abstracts. Bard
returned error messages for 3 abstracts in Task 1 and 2 ab-
stracts in Task 3. We use the task-specific classifiers and the
unified classifier to evaluate all the AI-generated abstracts, and
show the true positive rates in Table 8. CheckGPT achieves
100% accuracy in 5 experiments. However, the detection ac-
curacy for Bard-polished text (Task 3) is relatively low, at
86.3%. Further investigation shows that Bard makes very
small changes in some polishing tasks. It only changes a few
words, e.g., the tenses of verbs, while the sentence structures
are mostly preserved. Therefore, classifying such abstracts as
human-written appears to be a reasonable decision.

6.6 Use of ChatGPT in arXiv Papers
With the popularity of LLMs/ChatGPT, we raise the pivotal
question: How many authors are (possibly) using ChatGPT
to write or polish real-world research papers? In a pilot study,
we collect 1,000 abstracts from arXiv in each month spanning
from June 2022 to May 2023. We evaluate each abstract with
the unified cross-task, cross-disciplinary classifier and show
the ratio of identified GPT-generated abstracts in Figure 6.
We observe the following from the results: (1) there is a sig-
nificant increase in the usage of ChatGPT in papers/abstracts
posted on arXiv, with a peak of 13.54% and 14.02% in April
and May 2023. (2) The nearly exponential growth started
in December 2022, which is consistent with ChatGPT’s ini-
tial release date of 11/30/2022. (3) CheckGPT also reported
2.8% ∼ 3.7% of the abstracts posted before November 2022
as GPT-generated. This could be explained by CheckGPT’s
1% false positive rate, which could increase slightly since
arXiv covers a wider spectrum of disciplines. Moreover, it is
also possible that LLMs such as GPT-3 might be used by a
small number of early adopters in the research community.

7 Discussions

7.1 Prompt Engineering
Prompts are used to provide instructions to conversational
LLMs to customize/refine their responses. Research efforts
on prompt engineering aim to guide or improve the design
of ChatGPT prompts [22, 94]. We identify several popular
prompt designs that have been adopted and discussed in the
community [2, 3, 43, 70] and employ each of them to polish
5,000 abstracts randomly selected across all disciplines.

Figure 6: Detecting the use of ChatGPT in papers on arXiv.

Table 9: CheckGPT’s true positive rate on different prompts.
Prompt 1 2 3 4 5

w/o tuning 90.07% 93.57% 95.15% 97.35% 91.78%
w/ tuning 97.24% 98.72% 98.03% 98.37% 97.46%

Prompt 1: Rewrite the following abstract of a research paper
in first-person, clear, and academic language
Prompt 2: Please act as an expert paper editor and revise
the abstract section of the paper from the perspective of a
paper reviewer to make it more fluent and elegant. Here are
the specific requirements: [See Appendix A.3 for full prompt]
Prompt 3: Write a polished and refined version of the follow-
ing abstract of a research paper to improve its overall quality
and readability.
Prompt 4: I want you to act as an academic researcher. You
will be responsible for rewriting the abstract of a research
paper for clarity. Here is the original abstract of the paper:
Prompt 5: I want you to act as an academic paper writer. You
will be responsible for rewriting a paper abstract. Your task
is to improve the writing and clarity of the abstract. Here is
the original abstract of the paper:

We employ the cross-disciplinary classifier for Task 3 to
evaluate the polished abstracts and report the true positive
rates in Table 9. We can observe a slight decrease in Check-
GPT’s classification accuracy when different prompts are
used. However, in all the cases, CheckGPT’s detection accu-
racy is still higher than 90%. Moreover, when the last linear
layer of the classifier is tuned with 1,500 human-written sam-
ples and 1,500 GPT-polished samples (30% of the data), the
classification accuracy reached 97% to 98%.

7.2 Model Interpretation
Besides the accuracy, the transparency of CheckGPTmodel is
also important. The interpretation of CheckGPTnot only helps
us understand the rationale behind a specific decision, but also
provides discerning insights to distinguish AI-generated from
human-written texts. Therefore, to investigate this, we em-



ploy two methods: Integrated Gradients [45, 83] and Shapley
Values [17, 55]. They represent two different angles: model-
specific and model-agnostic explainability
• Integrated Gradients. This method assigns the importance

to each value by the gradients compared with the baselines
along the path. The baselines are the inputs that induce a
“neutral” decision. We utilize the implementation in [45]
and apply it to our models.

• Shapley Values. Originally introduced in [79] and recently
applied to machine learning interpretation, a Shapley Value
quantifies the impact of each feature by perturbing the input
value and seeing how the change of input contributes to
prediction. We adopt the implementation in [55].

Word-level Analysis. We first apply these methods at word-
level to measure the contribution of each word toward the
decisions. As the example shown in Fig. 7 using Integrated
Gradients, the word “landscape” and “automated” are iden-
tified as the most significant features for Task 1 and Task 3
respectively. The feature saliency is almost uniformly dis-
tributed across the entire paragraph in Task 2.

Fig 8 shows the comparisons of GPT-generated abstract
and human-written abstract explained by Shapley Values.
The words “on” and “data” are the most supportive features
leading to a decision of “human-written”. Words of metadis-
courses are the most important features in Task 1 and Task
3. Reporting verbs like “explore”, “aim”, “discuss” and “ex-
amine” are mostly adopted by the “GPT-written” style for
describing intentions. The transitional phases that guide the
readers, like “However”, “Overall” and “Ultimately”, are also
significant features for GPT writing, especially Task 2.

Our attempts at the word-level experiments produce rela-
tively uninformative findings. The significance assigned to
each individual word is usually insufficient for human users
to draw useful conclusions. The limitation of the methods is
due to the sophistication of the LLMs which capture com-
plex semantic and linguistic features. Thus, the word-level
interpretations are inadequate for our analysis.

Sentence-level Analysis. While independent words do not
show a sufficient power of explainability, the corporative se-
mantic patterns captured within sentences have the potential
to give a more comprehensive insight. Language comprehen-
sion relies heavily on context, nuance, and syntactic structures,
which are far more informative beyond interpreting individual
words. Furthermore, the LLMs like ChatGPT, typically build
their task to generate coherent and sentence-level responses.
Thus, a sentence-level analysis has been conducted in the
hope of a better-quality interpretation.

In Fig 9, we extend our analysis to sentence-level interpreta-
tions using Shapley Values because of its coherent output. The
abstracts are parsed into sentences, which become the new
units of features. From the results, we find that sentence-level
analysis provides more meaningful and consistent insights
for identifying GPT-generated texts. First, we find that the

supporting sentences for human texts or GPT texts locate dif-
ferently in an abstract, which means that the GPT writing style
for different presentation goals contains distinguishable and
unique patterns for detection. Second, we can see that Chat-
GPT frequently starts the abstract with a declarative statement
like “This paper proposes" to emphasize the focus of the paper.
It shows that the particular ways of presenting ideas consist
another character of GPT’s “footprint” in writing. Last, in the
last sentence of the abstracts, ChatGPT usually tries to use a
conclusive statement to summarize the findings or contribu-
tions of the paper, which is also widely observed in regular
ChatGPT conversations. This “habit” of summarization which
is designed for Q&A tasks reveals the third pattern uniquely
carried by GPT even when it is writing abstracts. Additional
examples of our interpretations are given in Appendix.

In summary, comparing the interpretations derived from
word- and sentence-level results, we find that the complex
linguistic and presentation patterns can be better expressed
by sentence-level features. However, we have to admit that
it also trades off the granularity and thus currently can not
provide results in finer details (e.g., patterns of wording and
phrasing). These interpretation experiments demonstrate that
there are no explicit or dominant indicators that can be easily
captured for GPT writing recognition. The finding emphasizes
the necessity for applying sophisticated and automated tools,
like deep learning techniques, to perform effective detection
for complicated and subtle semantic features.

8 Conclusion and Futureworks

In this paper, we first introduce a benchmarking dataset,
namely GPABenchmark, for LLM-content detection in
academia. GPABenchmark contains 600,000 samples
of human-written, GPT-written, GPT-completed, and GPT-
polished abstracts of research papers in three disciplines. Sec-
ond, we show that the existing online ChatGPT detectors
fall short in detection accuracy. A user study of 150+ par-
ticipants finds that human users are incapable of identifying
GPT-generated text. Finally, we present CheckGPT, a deep
learning-based detector for GPT-generated academic writ-
ing. With extensive experiments, we show that CheckGPT is
highly accurate with additional advantages in affordability,
flexibility, transferability, and explainability.

It is our future plan to further investigate GPT-generated
text from different disciplines and prompts. The prompt engi-
neering problem is highly challenging due to the complexity
of the LLMs, the mostly black-box nature of ChatGPT, and the
community’s very limited understanding of the operational
mechanisms behind ChatGPT prompts. We also plan to inves-
tigate how the users may manipulate the prompts or re-edit the
GPT-generated text to escape the detectors. Post-processing
may present a significant challenge, as knowledgeable users
with insights into either the detector or ChatGPT may pur-
posefully revise GPT-generated text to evade detection.
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A Additional Experimental Results

A.1 Benchmarking ZeroGPT
For each input text snippet, ZeroGPT [1] returns one of the
nine possible decisions. We assign an integer score of [0, 8]
as follows:

0. Your text is Human written
1. Your text is Most Likely Human written
2. Your text is Most Likely Human written, may include parts

generated by AI/GPT
3. Your text is Likely Human written, may include parts gen-

erated by AI/GPT
4. Your text contains mixed signals, with some parts gener-

ated by AI/GPT
5. Your text is Likely generated by AI/GPT
6. Your text is Most Likely AI/GPT generated
7. Most of Your text is AI/GPT Generated
8. Your text is AI/GPT Generated

The distribution of the scores for each task and each dis-
cipline is shown in Table 10. For instance, for GPT-polished
abstracts (Task 3) in CS, 88.3% were annotated as “human
written” by ZeroGPT, while 4.7% were annotated as “Most
likely human written”.

When we converted the 9-point scores to binary decisions
of “GPT”/“Human”, a threshold of 4 was used. While we can
also make the case that categories 2, 3, 4 should be categorized
as “GPT” in Task 3, since the decision statements indicate
that they “may include parts generated by AI/GPT,” which is
the case for Task 3. However, changing the decision threshold
will not significantly change the observations and conclusions
in Section 3.2, since only a very small portion of the samples
in Task 3 were annotated with those three labels, as shown
in Table 10. For Tasks 1 and 2, the text snippets we sent
to ZeroGPT were completely written by ChatGPT, hence, a
threshold of 4 is the most reasonable choice.

A.2 Benchmarking Open-AI’s Text Classifier
For each input text snippet, the OpenAI text classifier [64]
returns a decision from one of the five classes. We map them
to an integer score of [0, 4] as follows:

0. The classifier considers the text to be very unlikely AI-
generated.

1. The classifier considers the text to be unlikely AI-
generated.

2. The classifier considers the text to be unclear if it is AI-
generated.

3. The classifier considers the text to be possibly AI-
generated.

4. The classifier considers the text to be likely AI-generated.

The distribution of the scores for each task and each disci-
pline is shown in Table 11. For instance, for human-written CS

Table 10: Distribution of detection score generated by the
ZeroGPT: 0: human-written; 8: GPT-generated. The largest
score category for each experiment is shown in bold.

T1. GPT-ERI T2. GPT-CPL T3. GPT-POL
CS PHX HSS CS PHX HSS CS PHX HSS

(a) Score distribution (in %) of GPT-generated abstracts.
0 16.7 21 1.7 52.7 75.7 18 88.3 93 52
1 4.7 3 2 1.3 1 1 4.7 2 6.7
2 6 5 2 13.3 11.3 13.7 2 1 8.3
3 2.7 1 2 6.7 0.7 3 1.3 0.7 5.3
4 2.7 1.7 0 0.7 1.3 2 0.3 0.7 3
5 4.3 0.7 0.3 5.3 2 7.7 1.3 0 6.7
6 4.7 5.7 2.7 4 3.3 7.3 1 0.7 5
7 8.7 17.3 3.3 3.3 1 9.7 0 0.3 3.3
8 49.7 44.7 86 12.7 3.7 37.7 1 1.7 9.7
(b) Score distribution (in %) of human-written abstracts.
0 93.7 97.7 79 96.3 98.7 87.3 92 96 79
1 3.3 0 9 0.7 0 0.7 4 1 6.7
2 3 0.7 5 2.7 1 5.7 2 1.3 5
3 0 0 2 0 0 1 0.3 0.3 2
4 0 0.3 1.7 0 0 1.3 0.3 0 1.7
5 0 0 1 0 0.3 1 0.3 0.3 2
6 0 0 1.3 0 0 1 0 0 2
7 0 0.3 0.7 0.3 0 0.3 0 0.3 0.3
8 0 1 0.3 0 0 1.7 1 0.7 1.3

Table 11: Distribution of detection score generated by the
OpenAI text classifier: 0: very unlikely AI-generated; 2: un-
clear if it is AI-generated; 4: likely AI-generated. The largest
score category for each experiment is shown in bold.

T1. GPT-ERI T2. GPT-CPL T3. GPT-POL
CS PHX HSS CS PHX HSS CS PHX HSS

(a) Score distribution (in %) of GPT-generated abstracts.
0 0 0 0 0 0 8 4 5 11.3
1 0.3 0.3 3.3 1.3 12.3 11 23.7 35.3 31.3
2 19 29.7 33.7 35 64 53.7 66 55.3 51.3
3 50 50.7 51 56 22.7 24 6.3 4 6
4 30.7 19.3 12 7.7 1 3.3 0 0.3 0
(b) Score distribution (in %) of human-written abstracts.
0 11 15.7 60 4.3 7.7 56.3 12.7 18 62.0
1 40 54 24 31 52 23.3 38 51 26
2 45.3 28.3 14 54 38 16.7 48.3 29.7 10.7
3 3.7 2 1.3 10.7 2 3.3 1 1.3 1
4 0 0 0.7 0 0.3 0.3 0 0 0.3

abstracts, 11% are classified as “very unlikely AI-generated,
40% are classified as “unlikely AI-generated”, 45.3% are clas-
sified as “unclear if it is AI-generated”, and the remaining
3.7% are classified as “possibly AI-generated”.



A.3 Prompts
The complete Prompt 2 in Sec 7.1 is as follows:
Please act as an expert paper editor and revise the abstract
section of the paper from the perspective of a paper reviewer
to make it more fluent and elegant. Here are the specific
requirements:

1. Enable readers to quickly grasp the main points or essence
of the paper.

2. Allow readers to understand the important information,
analysis, and arguments throughout the entire paper.

3. Help readers remember the key points of the paper.
4. Please clearly state the innovative aspects of your model

and methods in the abstract, emphasizing your contribu-
tions.

5. Use concise and clear language to describe your methods
and results, making it easier for reviewers to understand
the paper.

Here is the original abstract section of the paper:

B Examples of Model Interpretation

In this section, we present several examples of model inter-
pretation in Fig 7. Fig 8 and Fig 9.



(a) Human-written text.

(b) GPT-written text in Task 1.

(c) GPT-completed text in Task 2.

(d) GPT-polished text in Task 3.

Figure 7: Word importance using Integrated Gradients. A case of HSS written by humans and ChatGPT in three different tasks.
Green regions indicate positive contributions to the corresponding label, and red ones indicate negative contributions.



(a) Human-written text.

(b) GPT-written text in Task 1.

(c) GPT-completed text in Task 2.

(d) GPT-polished text in Task 3.

Figure 8: Word importance using Shapley Values. A case of HSS written by humans and ChatGPT in three different tasks. Red
regions indicate positive contributions to the label of a particular text, while blue ones indicate negative contributions.



(a) Human-written text.

(b) GPT-written text in Task 1.

(c) GPT-completed text in Task 2.

(d) GPT-polished text in Task 3.

Figure 9: Sentence importance using Shapley Values. A case of HSS written by humans and GPT in three different tasks. Red
regions indicate positive contributions to the label of a particular text, while blue ones indicate negative contributions.
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